Правила работы с микроскопом. Минздравсоцразвития россии Постоянный препарат изучен на малом увеличении

имени профессора В.Ф. Войно-Ясенецкого

Министерства здравоохранения

и социального развития Российской Федерации»

ГОУ ВПО КрасГМУ

им. проф. Войно-Ясенецкого

Факультет ФМО

Кафедра биологии с экологией и курсом фармакогнозии

Ситуационные задачи

по дисциплине «Биология с экологией»

для самоподготовки студентов первого курса

специальность 060101– Лечебное дело

специальность 060103 – Педиатрия

специальность 060105 - Стоматология

Красноярск 2009

полочный индекс

Ситуационные задачи по дисциплине «Биология с экологией»: методические разработки к внеаудиторной работе для студентов 1 курса обучающихся на факультете ФМО по специальностям: 060101- «Лечебное дело», 060103 – «Педиатрия», 060105- «Стоматология»:- Красноярск, типография КрасГМУ.-2009.- 35с.

Составители: зав. каф., доц., д.б.н. Т.Я.Орлянская, доц., к.б.н. М.Н.Максимова, доц., к.б.н. доц., к.б.н. В.А.Чиненков, доц. к.б.н. Л.С. Смирнова, асс. Г.П. Гаевская, асс. Н.Н. Дегерменджи, асс. Т.С.Подгрушная, асс. В.С.Крупкина, асс. Т.И.Устинова, асс. С.В. Чижова.

Под редакцией д-ра биол. наук. Т.Я. Орлянской.

Методическое руководство по предмету «Биология с экологией» для студентов первого курса содержат набор ситуационных задач по основным разделам дисциплины, которые ориентируют обучающихся на контроль знаний программного материала в процессе самоподготовки.

1. Ситуационные задачи по теме «Биология клетки»

1. Постоянный препарат изучен на малом увеличении, однако при переводе на большое увеличение объект не виден, даже при коррекции макро- и микрометрическим винтами и достаточном освещении. Необходимо определить, с чем это может быть связано?

Ответ : Причина может быть связана с тем, что препарат помещен на предметный столик неправильно: покровным стеклом вниз, а при работе на большом увеличении толщина предметного стекла не позволяет добиться точной наводки на фокус.

2. Препарат помещен на предметный столик микроскопа, имеющего в основании лапки штатива зеркало. В аудитории слабый искусственный свет. Объект хорошо виден на малом увеличении, однако при попытке его рассмотреть при увеличении объектива х40, в поле зрения объект не просматривается, видно темное пятно. Необходимо определить, с чем это может быть связано?

Ответ : Причин может быть несколько: 1 – для исследования использована плоская сторона зеркала, а комната недостаточно ярко освещена, поэтому объект при большом увеличении недостаточно освещен и не виден в поле зрения; 2 – возможно, движение револьвера было недостаточным, не доведен до щелчка, поэтому объектив не находится против объекта исследования; 3 – посмотреть как помещен на предметный столик препарат, возможно, он помещен покровным стеклом вниз.

3. Исследуемый препарат оказался поврежден: разбито предметное и покровное стекла. Объясните, как это могло произойти?

Ответ : Причина - неправильное обращение с макрометрическим винтом. Он опускает объектив к препарату. При работе с ним необходимо смотреть не в окуляр, а сбоку, контролируя расстояние от объектива к препарату, которое составляет в среднем 0,5см.

4. Общее увеличение микроскопа составляет при работе в одном случае - 280, а в другом - 900. Объясните, какие использованы объективы и окуляры в первом и во втором случаях и, какие объекты они позволяют изучать?

Ответ: В первом случае используется окуляр х7, а объектив х40, при данном увеличении можно рассмотреть крупные микрообъекты (н-р, клетки кожицы лука, клетки крови лягушки, перекрест волос); во втором случае используется окуляр х10, а объектив х90, при данном увеличении можно рассмотреть самые мелкие микрообъекты, используя при этом иммерсионное масло (органоиды клеток, колонии бактерий, мелкие клетки простейших, клетки крови человека).

5. Как надо расположить препарат, чтобы увидеть объект в нужном виде?

Ответ: Препарат необходимо расположить на предметный столик покровным стеклом вверх, объект должен располагаться в центре отверстия предметного столика, с учетом того, что изображение в микроскопе получаем обратное.

6. При ряде врожденных лизосомных «болезнях накопления» в клетках накапливается значительное количество вакуолей, содержащих нерасщепленные вещества. Например, при болезни Помпе происходит накопление гликогена в лизосомах. Объясните с чем связано данное явление, исходя из функциональной роли данного органоида клеток.

Ответ: Лизосомы в клетке участвуют в процессах внутриклеточного переваривания, они содержат около 40 гидролитических ферментов: протеазы, нуклеазы, гликозидазы, фосфорилазы и др. В данном случае в наборе ферментов отсутствует фермент кислой а-гликозидазы, участвующий в функционировании лизосом.

7. При патологических процессах обычно в клетках значительно увеличивается количество лизосом. На основании этого возникло представление, что лизосомы могут играть активную роль при гибели клеток. Однако известно, что при разрыве мембраны лизосом, выходящие гидролазы теряют свою активность, так как в цитоплазме слабощелочная среда. Объясните, какую роль играют лизосомы в данном случае, исходя из функциональной роли этого органоида в клетке.

Ответ: Одной из функций лизосом является автолиз или аутофагия. В настоящее время склонны считать, что процесс аутофагоцитоза связан с отбором и уничтожением измененных, «сломанных» клеточных компонентов. В данном случае лизосомы выполняют роль внутриклеточных чистильщиков, контролирующих дефектные структуры. В конкретном случае накопление лизосом и связано с выполнением ферментами этой функции - автолиз погибших клеток.

8. Объясните какие последствия могут ожидать животную клетку, у которой в клеточном центре отсутствуют одна центриоль и лучистая сфера (астросфера).

Центросомы обязательны для клеток животных, они принимают участие в формировании веретена деления и располагаются на полюсах, в неделящихся клетках определяют полярность клеток. При отсутствии данного органоида такая клетка не способна к пролиферации.

9. Обычно, если клеточная патология связана с отсутствием в клетках печени и почек пероксисом, то организм с таким заболеванием нежизнеспособен. Дайте объяснение этому факту, исходя из функциональной роли этого органоида в клетке.

Ответ: Микротельца или пероксисомы играют важную роль в метаболизме перекиси водорода, которая является сильнейшим внутриклеточным ядом и разрушает клеточные мембраны. В пероксисомах печени фермент каталаза составляет до 40% всех белков и выполняет защитную функцию. Вероятно, отсутствие данных ферментов, приводит к необратимым изменениям на уровне функционирования клеток, тканей и органов.

10. Объясните, почему у зимних спящих сурков и зимующих летучих мышей число митохондрий в клетках сердечной мышцы резко снижено.

Ответ: Количество митохондрий в клетках сердечной мышцы зависит от функциональной нагрузки на сердце и расхода энергии, которая вырабатывается и накапливается в макроэргических связях АТВ в «энергетических станциях» клеток, которыми являются митохондрии. В период спячки в организме животных процессы метаболизма замедленны и нагрузка на сердце минимальная.

11. Известно, что у позвоночных животных кровь красная, а у некоторых беспозвоночных (головоногих моллюсков) голубая. Объясните с присутствием, каких микроэлементов связан определенный цвет крови у этих животных?

Ответ: Кровь этих животных голубая т.к. в ее состав входит гемоцианин, содержащий медь (Си).

12.Зерна пшеницы и семена подсолнечника богаты органическими веществами. Объясните, почему качество муки связано с содержанием клейковины в ней, какие органические вещества находятся в клейковине пшеничной муки. Какие органические вещества находятся в семенах подсолнечника?

Ответ: Клейковина – это та часть муки, в которой содержится белковый компонент, благодаря которому качество муки ценится выше. В семенах подсолнечника наряду с белками и углеводами в значительном количестве находятся растительные жиры.

13. Восковидные липофусцинозы нейронов могут проявляться в разном возрасте (детском, юношеском и зрелом), относятся к истинным болезням накопления, связанным с нарушением функций органоидов мембранного строения, содержащих большое количество гидролитических ферментов. Симптоматика включает признаки поражения центральной нервной системы с атрофией головного мозга, присоединяются судорожные припадки. Диагноз ставится при электронной микроскопии - в этих органоидах клеток очень многих тканей обнаруживаются патологические включения. Объясните, в каком органоиде в клетках нарушена функция?

Ответ: у людей с данной патологией нарушена функция лизосом, возможно, какие-то ферменты отсутствуют или не включаются, поэтому в лизосомах обнаруживаются недорасщепленные структуры.

14. У больного выявлена редкая болезни накопления гликопротеинов, связанная с недостаточностью гидролаз, расщепляющих полисахаридные связи эти аномалии характеризуются неврологическими нарушениями и разнообразными соматическими проявлениями. Фукозидоз и маннозидоз чаще всего приводят к смерти в детском возрасте, тогда как аспартилглюкозаминурия проявляется как болезнь накопления с поздним началом, выраженной психической отсталостью и более продолжительным течением.

Объясните, в каком органоиде в клетках нарушена функция?

Ответ: у людей с данной патологией нарушена функция лизосом, отсутствуют ферменты, расщепляющие гликопротеины, поэтому в лизосомах обнаруживаются недорасщепленные структуры.

15. Выявлено наследственное заболевание, связанное с дефектами в функционирования органоида клетки приводящее к нарушениям энергетических функций в клетках - нарушению тканевого дыхания, синтеза специфических белков. Данное заболевание передается только по материнской линии к детям обеих полов. Объясните, в каком органоиде произошли изменения. Ответ обоснуйте.

Ответ: произошел дефект митохондриальной ДНК, идет неправильное считывание информации, нарушается синтез специфических белков, проявляются дефекты в различных звеньях цикла Кребса , в дыхательной цепи , что привело к развитию редкого митохондриального заболевания.

16.Ядро яйцеклетки и ядро сперматозоида имеет равное количество хромосом, но у яйцеклетки объём цитоплазмы и количество цитоплазматических органоидов больше, чем у сперматозоида. Одинаково ли содержание в этих клетках ДНК?

Ответ: У яйцеклетки содержание ДНК больше, за счёт наличия митохондриальный ДНК.

17. Гены, которые должны были включиться в работу в периоде G 2 , остались неактивными. Отразится ли это на ходе митоза?

Ответ: В период G 2 синтезируются белки, необходимые для образования нитей веретена деления. При их отсутствии расхождение хроматид в анафазу митоза нарушится или вообще не произойдёт.

18. В митоз вступила двуядерная клетка с диплоидными ядрами (2n=46). Какое количество наследственного материала будет иметь клетка в метафазе при формировании единого веретена деления, а также дочерние ядра по окончании митоза?

Ответ: В каждом из двух ядер, вступивших в митоз, хромосомы диплоидного набора уже содержат удвоенное количество генетического материала. Объем генетической информации в каждом ядре - 2 n 4с. В метафазе при формировании единого веретена деления эти наборы объединятся, и объем генетической информации составит, следовательно - 4 n 8с (тетраплоидный набор самоудвоенных или реплицированных хромосом).

В анафазе митоза этой клетки к полюсам дочерних клеток разойдутся хроматиды. По окончании митоза ядра дочерних клеток будут содержать объем генетической информации = 4 n 4с.

19. После оплодотворения образовалась зигота 46,ХХ, из которой должен сформироваться женский организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды одной из Х-хромосом, отделившись друг от друга, не разошлись по 2-м полюсам, а обе отошли к одному полюсу.

Расхождение хроматид другой Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза, не внося дополнительных изменений, но и не исправляя изменённые наборы хромосом.

Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы? Предположите, какими могут быть фенотипические особенности этого организма?

Ответ: Набор неполовых хромосом (аутосом) в обоих бластомерах будет нормальным и представлен диплоидным числом = 44 несамоудвоенных (нереплицированных) хромосом – бывших хроматид метафазных хромосом зиготы.

В результате клетки организма, развившегося из этой зиготы, будут иметь разный набор хромосом, то есть будет иметь место мозаицизм кариотипа: 45,Х / 47,ХХХ примерно в равных пропорциях.

Фенотипически это женщины, у которых наблюдаются признаки синдрома Шерешевского-Тернера с неярким клиническим проявлением.

20. После оплодотворения образовалась зигота 46,ХY, из которой должен сформироваться мужской организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды Y-хромосомы не разделились и вся эта самоудвоенная (реплицированная) метафазная хромосома отошла к одному из полюсов дочерних клеток (бластомеров).

Расхождение хроматид Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза, не внося дополнительных изменений, но и не исправляя изменённые наборы хромосом.

Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы? Предположите, какой фенотип может иметь этот индивид?

Ответ: Мозаицизм кариотипа: 45,Х / 46,Х Y (сокращенно – Х0/Х Y ) примерно в равных пропорциях. Фенотипические варианты при этом типе мозаицизма - 45,Х / 46,Х Y разнообразны. Такой индивид внешне может быть как мужского, так и женского пола. Описаны случаи гермафродитизма у лиц с мозаицизмом 45,Х / 46,Х Y , когда внешне организм был женского пола, но с правой стороны обнаруживалось яичко (семенник), над влагалищем – половой член и уретральное отверстие.

Задачи для самоконтроля

1. Постоянный препарат изучен на малом увеличении, однако при переводе на большое увеличение объект не виден, даже при коррекции макро- и микрометрическим винтами и достаточном освещении. Необходимо определить, с чем это может быть связано?

2. Препарат помещен на предметный столик микроскопа, имеющего в основании лапки штатива зеркало. В аудитории слабый искусственный свет. Объект хорошо виден на малом увеличении, однако при попытке его рассмотреть при увеличении объектива х40, в поле зрения объект не просматривается, видно темное пятно. Необходимо определить, с чем это может быть связано?

3. Исследуемый препарат оказался поврежден: разбито предметное и покровное стекла. Объясните, как это могло произойти?

4. Общее увеличение микроскопа составляет при работе в одном случае - 280, а в другом - 900. Объясните, какие использованы объективы и окуляры в первом и во втором случаях и, какие объекты они позволяют изучать?

5. Вам выдан постоянный препарат для исследования объекта при большом увеличении микроскопа. Как надо расположить препарат, чтобы увидеть объект при большом увеличении? Объясните, почему неправильные манипуляции с препаратом можно обнаружить только при большом увеличении.

6. Объясните, какие перспективы могут ожидать клетку эпителиальной ткани, у которой нет центриолей?

7. В диплоидной клетке произошла 7-кратная эндоредупликация.

Какое количество наследственного материала она имеет?

8. Одним из фундаментальных первоначальных выводов классической генетики является представление о равенстве мужского и женского пола в передаче потомству наследственной информации. Подтверждается ли этот вывод при сравнительном анализе всего объема наследственной информации, вносимого в зиготу сперматозоидом и яйцеклеткой?

9. После выхода клетки из митоза произошла мутация гена, несущего программу для синтеза фермента геликазы.

Как это событие отразится на митотическом цикле клетки?

1 0. После оплодотворения образовалась зигота 46,ХХ, из которой должен сформироваться женский организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера одна из двух Х-хромосом не разделилась на две хроматиды и в анафазе целиком отошла к полюсу. Поведение второй Х-хромосомы прошло без отклонений от нормы. Все последующие митотические деления клеток в ходе эмбриогенеза протекали также без нарушений механизма митоза

Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы и (предположительно) фенотипические особенности этого организма?

11. Общеизвестно, что однояйцовые (монозиготные) близнецы являются генетически идентичными. По фенотипу они, при нормальном ходе цитологических процессов их формирования и развития в одних и тех же условиях среды, похожи друг на друга «как две капли воды».

Могут ли монозиготные близнецы быть разного пола – мальчиком и девочкой? Если не могут, то почему? А если могут, то в результате, каких нарушений в митотическом цикле делящейся зиготы?

Биология
Сборник ситуационных задач с эталонами ответов

Для студентов 1 курса,

обучающихся по специальности

060301–Фармация

Красноярск

Б
Биология: сборник ситуационных задач с эталонами ответов для студентов 1 курса, обучающихся по спец. 060301–Фармация/сост. Т.Я. Орлянская, Т.И. Устинова, Н.Н. Дегерменджи и др. – Красноярск: тип. КрасГМУ, 2012.- с.

Составители: д.б.н., доцент Орлянская Т.Я., ст.преподаватель Устинова Т.И., доцент Дегерменджи Н.Н., ст.преподаватель Гаевская Г.П., ассистент Кротова С.В., ассистент Борисенко Ю.Г., ассистент Афанаскина Л.Н.
Ситуационные задачи с эталонами ответов полностью соответствуют требованиям Государственного образовательного стандарта (2000) высшего профессионального образования по специальностям 060301–Фармация; адаптированы к образовательным технологиям с учетом специфики обучения по данным специальностям.

Рецензенты:

Утверждено к печати ЦКМС КрасГМУ (протокол №__от__.__.__ г.)

ЭТАЛОНЫ ОТВЕТОВ

Занятие №1 Микроскоп, его устройство и правила работы с ним. Уровни организации живого. Про- и эукариотические клетки…………………………6

Занятие №2 Биология эукариотической клетки. Структурные компоненты цитоплазмы………………………………………………………………………18

Занятие №3 Структурно-функциональная организация ядра. Размножение клеток……………………………………………………………………………..25

Занятие №4 Размножение организмов………………………………………....31

Занятие №5 Индивидуальное развитие организмов ………………………….37

Занятие №7 Законы Менделя. Взаимодействия генов………………………...45

Занятие №8 Хромосомная теория наследственности. Сцепленное наследование. Наследование пола ……………………………………………..53

Занятие №10 Филогенез кровеносной и мочеполовой систем позвоночных животных. …………………………………………………………………..........62

Занятие №11 Филогенез нервной системы позвоночных животных...………66

Занятие №12 Основы эволюционной теории. Микроэволюция и макроэволюция. …………………………………………………………………70

Занятие №14 Медицинское значение простейших из классов Споровики и Инфузории ……………………………………………………………….............81

Занятие №16 Тип Круглые черви. Аскарида человеческая, острица детская, власоглав, трихинелла…………………………………………………………..91

Занятие №17 Членистоногие – переносчики и возбудители заболеваний человека …………………………………………………………………………96

Занятие №19 Человек и биосфера …………………………………………….102

Занятие №20 Зачетное занятие по курсу «Биология»………………………..105

Занятие № 1. МИКРОСКОП, ЕГО УСТРОЙСТВО И ПРАВИЛА РАБОТЫ С НИМ. УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО. ПРО- И ЭУКАРИОТИЧЕСКИЕ КЛЕТКИ
Задача №1

Для изучения предложены два микропрепарата: 1) кожица лука и 2) крыло комара.


  1. При работе с каким из этих препаратов будет использована лупа?

  2. При изучении какого из двух этих объектов будет использоваться микроскоп?

Задача №2

Для выполнения практической работы предложены временный и постоянный препараты.


  1. Как вы отличите временный препарат от постоянного?

  2. Почему для изучения некоторых объектов лучше использовать временный микропрепарат?

Задача №3

В поле зрения при изучении препарата «Перекрест волос» (волосы содержат большое количество пигмента – темно-коричневого цвета) видны при малом увеличении следующие образования: толстые полоски темно-коричневого цвета, расположенные крест-накрест, пузырьки разного диаметра темного цвета, длинные нитевидные образования с четкими краями, но бесцветные.


  1. Где в поле зрения представлены артефакты?

  2. Что на данном препарате является объектом исследования?

Задача №4

Рассматриваются три вида клеток: клетки кожицы лука, клетка бактерии и клетка эпителия кожи лягушки.


  1. Какие из перечисленных клеток можно уже четко рассмотреть при увеличении микроскопа (7х8)?

  2. Какие клетки можно увидеть только при увеличении (7х40) и при иммерсии?

Задача №5

Исходя из предложенного стихотворения:

«С лука сняли кожицу-

Тонкую, бесцветную,

Положили кожицу

На стекло предметное,

Микроскоп поставили,

Препарат – на столик…»


  1. О приготовлении какого препарата идет речь (временного или постоянного)?

  2. Какие важные моменты в приготовлении препарата здесь не отмечены?

Задача №6

Постоянный препарат изучен на малом увеличении, однако при переводе на большое увеличение объект не виден, даже при коррекции макро- и микрометрическим винтами и достаточном освещении.


  1. С чем это может быть связано?

  2. Как исправить данную ошибку?

Задача №7

Препарат помещен на предметный столик микроскопа, имеющего в основании лапки штатива зеркало. В аудитории слабый искусственный свет. Объект хорошо виден на малом увеличении, однако при попытке его рассмотреть при увеличении объектива х40, в поле зрения объект не просматривается, видно темное пятно.


  1. С чем может быть связано появление темного пятна?

  2. Как исправить ошибку?

Задача №8

Исследуемый препарат оказался поврежден: разбито предметное и покровное стекла.


  1. Как это могло произойти?

  2. Какие правила надо соблюдать при микроскопировании?

Задача №9

Общее увеличение микроскопа составляет при работе в одном случае - 280, а в другом - 900.


  1. Какие использованы объективы и окуляры в первом и во втором случаях?

  2. Какие объекты они позволяют изучать?

Занятие № 2. БИОЛОГИЯ ЭУКАРИОТИЧЕСКОЙ КЛЕТКИ. СТРУКТУРНЫЕ КОМПОНЕНТЫ ЦИТОПЛАЗМЫ
Задача №1

Известно, что у позвоночных животных кровь красная, а у некоторых беспозвоночных (головоногих моллюсков) голубая.


  1. Присутствие каких микроэлементов определяет красный цвет крови у животных?

  2. С чем связан голубой цвет крови у моллюсков?

Задача №2

Зерна пшеницы и семена подсолнечника богаты органическими веществами.


  1. Почему качество муки связано с содержанием в ней клейковины?

  2. Какие органические вещества находятся в семенах подсолнечника?

Задача №3

Восковидные липофусцинозы нейронов могут проявляться в разном возрасте (детском, юношеском, зрелом), относятся к истинным болезням накопления, связанным с нарушением функций органоидов мембранного строения, содержащих большое количество гидролитических ферментов. Симптоматика включает признаки поражений центральной нервной системы с атрофией головного мозга, присоединяются судорожные припадки. Диагноз ставится при электронной микроскопии – в этих органоидах клеток очень многих тканей обнаруживаются патологические включения.


  1. Функционирование какого органоида нейрона нарушено?

  2. По каким признакам вы это выявили?

Задача №4

У больного выявлена редкая болезнь накопления гликопротеинов, связанная с недостаточностью гидролаз, расщепляющих полисахаридные связи. Это аномалии характеризуются неврологическими нарушениями и разнообразными соматическими проявлениями. Фукозидоз и маннозидоз чаще всего приводят к смерти в детском возрасте, тогда как аспартилглюкозаминурия проявляется как болезнь накопления с поздним началом, выраженной психической отсталостью и более продолжительным течением.


  1. Функционирование какого органоида клеток нарушено?

  2. По каким признакам это можно выявить?

Задача №5

При патологических процессахобычно в клетках увеличивается количество лизосом. На основании этого возникло представление, что лизосомы могут играть активную роль при гибели клеток. Однако известно, что при разрыве мембраны лизосом, входящие гидролазы теряют свою активность, т.к. в цитоплазме слабощелочная среда.


  1. Какую роль играют лизосомы в данном случае, исходя из функциональной роли этого органоида в клетке?

  2. Какой органоид клетки выполняет функцию синтеза лизосом?

Задача №6

Выявлено наследственное заболевание, связанное с дефектами функционирования органоида клетки, приводящее к нарушениям энергетических функций в клетках – нарушению тканевого дыхания, синтеза специфических белков. Данное заболевание передается только по материнской линии к детям обоих полов.


  1. В каком органоиде произошли изменения?

  2. Почему данное заболевание передается только по материнской линии?

Задача №7

Обычно, если клеточная патология связана с отсутствием в клетках печени и почек пероксисом, то организм с таким заболеванием нежизнеспособен.


  1. Как объяснить этот факт, исходя из функциональной роли этого органоида в клетке?

  2. С чем связана нежизнеспособность организма в данном случае?

Задача №8

У зимних спящих сурков и зимующих летучих мышей число митохондрий в клетках сердечной мышцы резко снижено.


  1. С чем связано данное явление?

  2. Для каких еще животных характерно такое явление?

Занятие №3. ЯДРО, ЕГО СТРУКТУРНЫЕ КОМПОНЕНТЫ. РАЗМНОЖЕНИЕ КЛЕТОК
Задача № 1

Ядро яйцеклетки и ядро сперматозоида имеет равное количество хромосом, но у яйцеклетки объём цитоплазмы и количество цитоплазматических органоидов больше, чем у сперматозоида.


  1. Одинаково ли содержание в этих клетках ДНК?

  2. Увеличится ли количество органоидов после слияния яйцеклетки со сперматозоидом?

Задача №2

Гены, которые должны были включиться в работу в периоде G 2 остались неактивными.


  1. К каким изменениям в клетке это приведет?

  2. Отразится ли это на ходе митоза?

Задача №3

В митоз вступила двуядерная клетка с диплоидными ядрами (2n=46).


  1. Какое количество наследственного материала будет иметь клетка в метафазе при формировании единого веретена деления?

  2. Какое количество наследственного материала будут иметь дочерние ядра по окончании митоза?

Задача №4

После оплодотворения образовалась зигота 46ХХ, из которой должен сформироваться женский организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды одной из Х-хромосом, отделившись друг от друга, не разошлись по 2-м полюсам, а обе отошли к одному полюсу. Расхождение хроматид другой Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза.



  1. Какими могут быть фенотипические особенности этого организма?

Задача №5

После оплодотворения образовалась зигота 46ХY, из которой должен сформироваться мужской организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды Y-хромосомы не разделились и вся эта самоудвоенная (реплицированная) метафазная хромосома отошла к одному из полюсов дочерних клеток (бластомеров). Расхождение хроматид Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза.


  1. Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы?

  2. Какой фенотип может иметь этот индивид?

  3. Действие каких факторов могло привести к данной мутации?

Задача №6

При делении клетки митозом в одной из двух образовавшихся новых клеток не оказалось ядрышка.


  1. Какое строение имеет ядрышко?

  2. К чему может привести данное явление?

Задача №7

Число ядерных пор постоянно меняется.


  1. Какое строение имеет ядерная пора?

  2. С чем связано изменение числа пор в ядерной оболочке?

Занятие №4. РАЗМНОЖЕНИЕ ОРГАНИЗМОВ
Задача №1

Яйцеклетка содержит большое количество желтка сосредоточенного в центре яйцеклетки, активная зона цитоплазмы и ядро расположены по поверхности. Такая яйцеклетка есть у насекомых.


  1. Какой тип яйцеклетки описан?

  2. Какие еще типы яйцеклеток вам знакомы?

Задача №2

У девятипоясного броненосца тату всегда рождается четное количество одинаковых детенышей.


  1. Как вы считаете, что происходит у этого животного при оплодотворении?

  2. Как называется данный тип размножения?

Задача №3

Одноклеточные организмы дрожжевые грибы и многоклеточные организмы кишечнополостные имеют сходства и различия.


  1. В чем заключается сходство способов размножения у этих животных?

  2. Какие преимущества дает этот способ размножения?

Задача №4

Сперматозоиды в семенной жидкости развивают скорость 5 см\ч, что применительно к их размерам, примерно в 1,5 раза быстрее, чем скорость пловца-олимпийца.


  1. Какие особенности их организации обуславливают такую скорость передвижения?

  2. Каково строение сперматозоида?

Задача №5

Для яйцеклеток характерно необычное отношение объема ядра к объему цитоплазмы: у яйцеклеток оно сильно снижено, а у сперматозоидов, наоборот, ядерно-цитоплазматическое отношение очень высокое.


  1. Свяжите показатели ядерно-цитоплазменных отношений с функциональной ролью половых клеток.

  2. Охарактеризуйте строение яйцеклетки млекопитающих.

1. Установка микроскопа на рабочем месте является важным условием успешной работы. Микроскоп следует поставить, ориен­тируя его для наблюдения левым глазом, на расстоянии около 3 см от края стола.

2. Перед работой необходимо протереть все внешние части микро­скопа, не вынимая окуляр.

3. Для обеспечения максимального движения предметного столика (и препарата) перед началом работы с микроскопом следует центрировать предметный столик, т.е. движением винтов привести его в положение,


при котором линза конденсора располагается точно посередине отвер­стия предметного столика. Центрировать предметный столик нужно и в процессе работы, и после ее окончания.

4. Освещение поля зрения проводится следующим образом. При изучении зоологических подвижных объектов лучше использовать вогнутое зеркало, предварительно подняв конденсор вверх до упора. Наилучшее освещение дает рассеянный дневной свет, но можно ис­пользовать и другие источники света. Следует помнить, что нежела­тельно слишком яркое и с бликами освещение поля зрения, беспокоящее живые объекты и опасное для зрения исследователя. Поле зрения долж­но быть освещено равномерно. При обнаружении в нем темных зон следует проверить положение револьвера и частей конденсора. При изучении прозрачных или бесцветных объектов поле зрения следует притенить, прикрыв диафрагму или опустив конденсор. При рассмо­трении темных, интенсивно окрашенных объектов, диафрагму нуж­но открыть.

5. Фокусировка изображения. Используя постоянный или изго­товив временный препарат, помещают его на предметный столик.

Начинать работу нужно с изучения объекта при малом увеличе­нии, поэтому, приступая к работе и закончив ее, следует поставить микроскоп на малое увеличение. Понять необходимость выпол­нения этого требования можно, если наблюдать изменения расстояния между нижним концом объектива и препаратом при повороте револь­вера и смене объектива малого увеличения (10 х или 15 х) на большое (40 х). Исходное положение объектива малого увеличения ~1 см от ниж­него его края до препарата.

Исследуя объект, основную информацию о нем можно получить при малом его увеличении, при котором оптимальны освещенность и резкость. Переходя на большое увеличение, мы выигрываем в разме­рах объекта, но значительно проигрываем в четкости общей картины.

При малом увеличении фокусировка (наведение на резкость) осу­ществляется с помощью макровинта под постоянным контролем глаза, т.е. не отнимая глаза от окуляра. Добившись необходимой резкости (грубая наводка макровинтом), окончательную доводку фокусировки выполняют микровинтом. При хорошей грубой наводке движение микровинта в одну или другую сторону (от себя или к себе) не должно превышать двух полных оборотов. В противном случае следует снова использовать макровинт. Это особенно важно при работе с большим увеличением, когда расстояние от края объектива до препарата очень


18 Технические средства изучения микроскопических объектов


Микроскоп бинокулярный стереоскопический (МБС) 19

мало. При большом увеличении следует пользоваться только микро­винтом, предварительно проведя грубую наводку при малом увели­чении, а затем поворотом револьвера установив большое увеличение. Закончив изучение препарата при большом увеличении, микроскоп следует сразу перевести на малое увеличение.

При работе с объективами разного увеличения нужно помнить два важных обстоятельства.

Во-первых, микроскоп дает плоскостное изображение объекта. Поэтому при большом увеличении мы видим четко очень тонкую плоскость, все, что выше или ниже ее, видно неясно, и нужно посто­янно работать микровинтом, чтобы рассмотреть все структуры. При объективе малого увеличения исследуемая плоскость толще и часто позволяет отчетливо видеть весь объект.

Вторая особенность работы при разных увеличениях связана с освещением. Маленькое входное отверстие и свойства линз объек­тива большого увеличения пропускают очень узкий пучок световых лучей, поэтому при переходе с малого на большое увеличение мы зна­чительно теряем в интенсивности освещения объекта. Необходимо открыть диафрагму конденсора.

6. Перемещение препарата на предметном столике при малом увели­чении осуществляется вручную. Определенную трудность представляет то, что оптическая система микроскопа дает обратное изображение. Нужна определенная сноровка, чтобы усвоить: все, что мы видим сверху, на са­мом деле расположено внизу, то, что справа, - находится слева, и нао­борот.

При переходе на большое увеличение движение препарата долж­но быть очень точным и проводится винтами предметного столика. Переходя с малого на большое увеличение, объект или его часть, ко­торую нужно изучить, необходимо предварительно движением пре­парата разместить в центре поля зрения малого увеличения и лишь после этого перевести на большое увеличение.

Микроскоп, как всякий точный прибор, требует бережного обра­щения. Протирать его, особенно линзы окуляра и объектива, изготов­ленные из мягкого, легко повреждаемого стекла, нужно осторожно, используя мягкие, много раз стиранные сухие полотняные салфетки. Нельзя использовать для очистки стекол спирт, т.к. это вызывает рас­творение специальных покрытий и помутнение оптики.

Нельзя самостоятельно развинчивать окуляры и объективы. Их повреждения может устранить только специалист.


Микроскоп бинокулярный стереоскопический (МБС)

Для изучения объемных организмов и наблюдения за движени­ем, питанием и другими формами поведения достаточно крупных (не микроскопических) животных, а также для их препарирования используются бинокулярные стереоскопические микроскопы малого увеличения (МБС). Они дают прямое изображение, имеют большое поле зрения, широкий диапазон разрешающих увеличений (табл. 2). С помощью МБС можно изучать прозрачные водные объекты в про­ходящем световом потоке и непрозрачные, темные - в отраженном свете. В настоящее время используются модели МБС-9 и МБС-10 (рис. 3).

Таблица 2 Кратность увеличения объектов бинокулярным микроскопом при использовании разных объективов и окуляров

Окуляры
Объективы 6" 8" 12,5 х 14"
0,6" 3,5 4,5 8,1
I х 12,5 14,3
2" 28,6
4 х 57,2
7 х

Оптический блок МБС включает оптическую головку и окуляр­ную насадку.

В оптическую головку вмонтированы все оптические детали, включающие объектив микроскопа, выше которого установлен барабан с галилеевскими системами. Ось барабана заканчивается расположен­ными снаружи с двух сторон рукоятками, при вращении которых происходит переключение увеличений, значения которых нанесены на рукоятках (7 х, 4 х, 2 х, I х, 0,6 х).

Чтобы установить нужное увеличение, необходимо, вращая ба­рабан, цифру на рукоятке совместить с точкой на подшипнике. При этом перефокусировку проводить не нужно. Положение барабана фиксируется щелчком. Фокусировка объектива оптической головки производится винтами на направляющей, с помощью которых поднимают или опускают головку относительно столика микроскопа.


20 Технические средства изучения микроскопических объектов


Окулярная насадка состоит из двух призм, заключенных в по­движные оправы, на которых укреплены окулярные трубки. Двигая оп-швы призм, можно менять расстояние между центрами линз окулярных tdv6ok адаптируя их положение к межзрачковому расстоянию глаз исследователя.

Предметный столик съемный, устанавливается и закрепля­ется винтом на специальном основании. На задней стенке основания столика имеется гнездо для осветителя. Внутри основания располо­жено зеркало с матовой и зеркальной поверхностями и рукояткой для его вращения при регулировании освещения поля зрения.

Осветительная система, помимо зеркала, включает специальный осветитель, состоящий из конденсора и лампы накаливания, объе­диненных общим корпусом.

Изучение объекта возможно в отраженном и проходящем свете. Что­бы использовать осветитель для работы в отраженном свете, его крепят на шарнирном кронштейне. Для наблюдения в проходящем свете осветитель переносится в гнездо основания предметного столика.

В зависимости от структурных особенностей объекта (его плот­ности, прозрачности, окраски) отверстие предметного столика может закрываться стеклянной или металлической пластинкой, одна сторо­на которой окрашена в белый, другая - в черный цвет.

Изготовление препаратов для микроскопирования

Для изучения под микроскопом используют заранее изготовлен­ные постоянные препараты (их изготовление требует определен­ных навыков и времени) либо по ходу работы готовятся временные препараты. Материалом для них могут служить целые микроскопи­ческие или достаточно мелкие объекты (тотальные препараты) или части их тела.

При работе с микроскопом любой объект помещается на пред­метное стекло - стеклянную пластинку стандартного размера (76 х 26 мм). Очень немногие объекты рассматриваются сухими, чаще в капле воды или другой жидкости. Чтобы предохранить стекла объек­тивов от увлажнения, помещенный на предметное стекло в капле жидкости материал покрывается покровным стеклом. Его обычный размер 18 х 18 мм. Оно изготавливается из высококачественного сте­кла, очень тонкое и хрупкое.

Технические средства изучения микроскопических объектов

Покрывать каплю жидкости с исследуемым материалом нужно так, чтобы на препарате не остава­лись пузырьки воздуха. Для этого, держа покровное стекло за два угол­ка, противоположную его грань ста­вят в каплю жидкости и постепенно опускают стекло (рис. 4). Оставши­еся пузырьки легко отличить: они имеют широкий темный ободок, а поверхность их отливает зеркаль­ным блеском. Крупные пузырьки также имеют темное окаймление, а внутренняя их поверхность напо­минает запотевшее стекло.

Покрывая подготовленный временный препарат покровным стек­лом, необходимо учитывать объем изучаемого объекта, в противном случае он может быть деформирован или раздавлен тяжестью стекла. Во избежание этого на покровное стекло наносят восковые ножки. Обычный чистый пчелиный воск смешивается со скипидаром при подогреве (и тщательном соблюдении правил противопожарной бе­зопасности!) в пропорции 2,5:1. Такая масса может длительное время храниться, лучше в стеклянном бюксе или коробке. Перед исполь­зованием воск слегка разминают пальцами, чтобы он стал пластич­нее. Затем все четыре уголка покровного стекла, слегка царапая ими по комочку, снабжают восковыми ножками желаемой высоты и по­крывают объект на препарате, ориентируя покровное стекло ножками вниз.


Подцарство Protozoa - простейшие Тип Sarcomastigophora - саркомастигофоры

Тип объединяет более 25 000 видов простейших. Знакомству с его представителями в лабораторном практикуме по зоологии беспозво­ночных уделяется значительное внимание. В частности, предусмат­ривается ознакомление студентов с простейшими, принадлежащими к трем наиболее значимым подтипам: саркодовых, жгутиконосцев и опалинат.

Подтип Sarcodina - саркодовые

Изучение животных традиционно начинается с одноклеточных, а среди последних - с саркодовых. Наиболее удобным объектом явля­ется группа пресноводных амеб. Они малоподвижны, имеют доста­точно простое строение и легко культивируются в лабораторных усло­виях. Все это облегчает их изучение.

Представители подтипа в большинстве своем характеризуются амебоидным движением. Обитают в водной среде, почве, имеются па­разитические формы.

Надкласс Rhizopoda - корненожки

Объединяет организмы с псевдоподиями, не имеющими высоко-дифференцированных внутренних скелетных образований.

Класс Lobosea

Амебоидные формы с лопастевидными псевдоподиями (лобопо-диями), для которых не характерно слияние в сетевидные структуры.

М.: Агропромиздат, 1988. - 271 c.
ISBN 5-10-000614-5
Скачать (прямая ссылка): praktiumpocitologii1988.djvu Предыдущая 1 .. 57 > .. >> Следующая
Постоянный микротомный препарат с продольными срезами корней сначала рассматривают при малом увеличении микроскопа. На кончике корня хорошо заметен чехлик, предохраняющий конус нарастания от повреждений во время роста
в почве. Далее следует конус нарастания корня, или зона деления клеток (около 2 мм). За конусом нарастания расположена зона растяжения, где клетки вытягиваются в длину, а затем зона всасывания с корневыми волосками. Митоз изучают на меристематических клетках конуса нарастания корня, где имеется много делящихся клеток. Меристема состоит из рядов клеток прямоугольной формы. Каждый ряд клеток ведет свое происхождение от одной клетки.
После ознакомления с корнем при малом увеличении препарат нужно рассматривать с объективом 40X.
Интерфаза. На обычных постоянных препаратах интерфазное состояние ядра характеризуется нежной структурой хроматина. Хромосомы в это время сильно деспирализованы и не выявляются. Ядра имеют округлую форму и гомогенную зернистую структуру. Из других компонентов ядра хорошо видны ядрышки. При использовании некоторых ядерных фиксаторов, например Бродского, и окрашивании препаратов гематоксилином можно увидеть с иммерсией под микроскопом (объектив 90Х) в ядре растительной клетки хроматиновую сеть и крупные зерна хроматина, образующие хромоцентры.
После завершения интерфазы клетки вступают в митоз. Деление клетки обычно начинается с преобразований в ядре.
В профазе (рис. 47) ядро увеличивается, и в нем становятся отчетливо видны хромосомные нити, которые в это
Рис. 47. Митоз в клетках корня лука Allium сера (микро-томный препарат):
1 профаза; "2 - метафаза; Я - анафаза;. 4 - тело фаза; 5 - интерфаза.
время уже спирализованы. Каждая хромосома после удвоения в интерфазе состоит из двух сестринских хроматид, соединенных одной центромерой. В конце профазы обычно исчезают ядерная оболочка "и ядрышки. На препаратах всегда можно найти раннюю и позднюю профазы и сравнить их между собой. Хромосомные нити более четко видны в поздней профазе, и нередко можно заметить, что они удвоены.
Метафаза, После того как исчезнет ядерная оболочка, видно, что хромосомы достигли максимальной конденсации, стали короче и перемещаются к экватору клетки, располагаясь в одной плоскости. Этот период в митозе называется метафазой. Клетка уже имеет митотическое (ахроматиновое) веретено, состоящее из опорных и тянущих нитей. Первые из них протянуты от одного полюса к другому, а вторые связывают центромеры хромосом с полюсами.
На препаратах, окрашенных гематоксилином, нити митотического веретена не всегда видны, так как данный краситель ядерный. Однако в учебном фильме и на других препаратах хорошо видно, что каждая хромосома, будучи -прикрепленной к митотическому веретену, состоит из двух параллельно расположенных хроматид.
Удвоенная хромосома в метафазе обычно располагается перпендикулярно нитям митотического веретена и на равном расстоянии от полюсов. Центромеры всех хромосом находятся в одной экваториальной плоскости, что очень удобно для подсчета хромосом и изучения их морфологии. "
Микротомные препараты для подсчета хромосом обычно делают с поперечных срезов корней, чтобы метафаза была видна с полюса. В таком положении хорошо видно, что хромосомы располагаются на некотором расстоянии друг от друга. В это время их можно зарисовать и подсчитать.
Анафаза начинается с момента деления центромер, а затем происходит разъединение хроматид. Сестринские хрома-тиды каждой хромосомы расходятся к разным полюсам. Так происходит точное распределение генетического материала, и на каждом полюсе оказывается такое же число хромосом, какое было у исходной клетки до их удвоения. Например, у ржи в соматических клетках 14 хромосом. В метафазе у нее
14 удвоенных (дихроматидных) " хромосом. В анафазе после расхождения сестринских хроматид на полюсах оказывается снова по 14 хромосом.
После разделения центромеры каждая хроматида приобретает функции самостоятельной хромосомы.
Перемещение хроматид к полюсам происходит вследствие сокращения тянущих нитей и удлинения опорных нитей митотического веретена. При просмотре учебного фильма видно, что этот процесс совершается очень быстро по сравнению" с дру-
гими фазами и его труднее уловить. Поэтому на препаратах анафаза встречается реже, чем профаза.
В телофазе хромосомы на каждом полюсе претерпевают’деконденсацию, т. е. процесс, противоположный происходящему в профазе. Контуры хромосом теряют свою четкость, митотическое веретено разрушается, восстанавливается ядер-ная оболочка и появляются ядрышки. Таким образом, после различных структурных преобразований произошло разделение неходкого ядра на два дочерних. Во время телофазы из фраг-мопласта формируется клеточная стенка, которая делит все содержимое цитоплазмы на две равные части, - происходит цитокинез. Так заканчивается митоз.
О продолжительности отдельных фаз митоза можно судить по прижизненным наблюдениям. Установлено, что в эндосперме гороха профаза длится 40 мин, метафаза - 20, анафаза-12, телофаза-1.10 мин, т. е. наиболее продолжительны оказываются первая и последняя фазы митоза. Весь митоз длится около 3 ч. Продолжительность митотического цикла - в несколько раз больше. Так, у конских бобов (Vicia fab а) весь митотический цикл длится 30 ч, причем митоз составляет 4 ч, а интерфаза - 26 ч, из которых период G\ - 12 ч, S - 6 ч, С2 - 8 ч. У скерды зеленой самый короткий митотический цикл в некоторых клетках длится 8 ч, а большинство клеток проходит его за 10-12 ч. Из трех периодов интерфазы наиболее вариабелен по продолжительности Gi-период. Кинетика митоза зависит от различных внутренних и внешних факторов, уровня илоидности, pH среды, гормональной активности, температуры, режима освещения и др.

В микроскопе для получения увеличенного изображения очень мелких объектов используется увеличительная способность выпуклых линз. На рис. П.2.3 изображен микроскоп с указанием деталей его строения. Микроскоп-дорогой прибор, поэтому необходимо обращаться с ним осторожно и не пренебрегать следующими правилами:

1. Храните микроскоп в ящике (или под колпаком), чтобы предохранить его от пыли.

2. Вынимайте его из ящика двумя руками и ставьте на место мягко, чтобы избежать сотрясения.

3. Линзы должны быть чистыми, для этого их необходимо протирать кусочком ткани.

4. Микроскоп всегда необходимо фокусировать, перемещая трубу вверх от препарата. В противном случае очень легко повредить препарат.

5. Держите открытыми оба глаза и смотрите ими по очереди.

Настройка микроскопа для работы при малом увеличении

1. Поставьте микроскоп на стол и сядьте в удобной позе. Исследуемый объект на предметном столике микроскопа должен быть освещен. Для этого пользуются специальным осветителем, светом из окна или от настольной лампы. В двух последних случаях используют вогнутую поверхность находящегося под предметным столиком зеркала. С помощью зеркала свет направляют через отверстие в предметном столике. Если имеется подходящий конденсор, то для направления света через него используют плоскую поверхность зеркала.

2. С помощью винта грубой настройки поднимите вверх тубус микроскопа и поворачивайте револьверную головку до тех пор, пока объектив с малым увеличением (× 10 или 16 мм) не попадет в паз тубуса (при этом раздается щелчок).

3. Положите препарат, который вы собираетесь рассматривать, на предметный столик микроскопа так, чтобы находящийся под покровным стеклом исследуемый материал находился над серединой отверстия в предметном столике.

4. Глядя на предметный столик и препарат сбоку, опускайте тубус с помощью винта грубой настройки до тех пор, пока объектив с малым увеличением не окажется примерно в 5 мм от препарата.

5. Глядя в микроскоп, поворачивайте винт грубой настройки до тех пор, пока объект не попадет в фокус.

Настройка микроскопа для работы при большом увеличении

1. При работе с объективом большого увеличения для создания достаточного освещения необходим искусственный свет. Для этого используют настольную лампу или специальный осветитель для микроскопа с матовой лампочкой. При работе с лампой накаливания необходимо между ней и микроскопом поместить лист бумаги. Поверните зеркало плоской поверхностью вверх так, чтобы свет, отражаясь, попадал в микроскоп.

2. Сфокусируйте конденсор, не убирая препарата с предметного столика. Поднимите конденсор так, чтобы расстояние между ним и предметным столиком было не более 5 мм. Глядя в микроскоп, поворачивайте винт грубой настройки до тех пор, пока объект не попадет в фокус. Теперь наводите фокус конденсора до тех пор, пока изображение лампы не наложится точно на препарат. Поместите конденсор несколько вне фокуса так, чтобы изображение лампы исчезло. Теперь освещение должно быть оптимальным. В конденсор вмонтирована диафрагма. Ею регулируют величину отверстия, через которое проходит свет. Это отверстие должно быть открыто как можно шире. Таким образом достигается максимальная четкость изображения (см. рис. П.2.3).

3. Поворачивайте револьверную головку до тех пор, пока объектив большого увеличения (× 40 или 4 мм) не попадет в паз. Если на малом увеличении фокус уже был установлен, то при повороте револьверной головки объектив большого увеличения автоматически установится приблизительно в фокусе. Фокусирование всегда производите движением объектива вверх с помощью винта тонкой настройки.

4. Если при движении объектива с линзами большого увеличения фокус не устанавливается, сделайте следующее: глядя на предметный столик сбоку, опускайте тубус микроскопа до тех пор, пока линза почти не коснется препарата. Следите за отражением линзы объектива на препарате и добивайтесь того, чтобы линза почти коснулась своего отражения.

5. Глядя в микроскоп и поворачивая винт тонкой настройки, медленно поднимайте объектив до тех пор, пока изображение не попадет в фокус.

Увеличение

Увеличение объекта под микроскопом происходит с помощью окуляра и линзы объектива (табл. П.2.1).

Масляная иммерсия

Для того чтобы получить более сильное увеличение, чем при работе с обычным объективом большого увеличения, необходимо использовать масляно-иммерсионную линзу. Способность линзы собирать свет в значительной степени усиливается, если между линзой объектива и покровным стеклом поместить жидкость. Жидкость должна иметь тот же коэффициент преломления, что и сама линза. Поэтому в качестве жидкости обычно используют кедровое масло.

1. Положите препарат на предметный столик и сфокусируйте изображение так же, как при работе с обычным большим увеличением. Вместо объектива с линзой большого увеличения установите объектив с масляно-иммерсионной линзой.

2. Капните каплю кедрового масла на покровное стекло непосредственно над исследуемым объектом.

3. Снова сфокусируйте изображение теперь уже под малым увеличением, затем поворотом револьверной головки установите объектив с масляно-иммерсионной линзой так, чтобы его кончик касался капли масла.

4. Глядя в микроскоп, очень осторожно сфокусируйте линзу с помощью винта тонкой настройки. Помните, что фокусная плоскость линзы находится всего в 1 мм от поверхности покровного стекла.

5. Кончив работу, сотрите с линзы масло мягкой тряпочкой.

Loading...Loading...